Showing posts with label automatic. Show all posts
Showing posts with label automatic. Show all posts

Saturday, November 8, 2014

Automatic TV Lighting Switch

The author is the happy owner of a television set with built-in Ambilight lighting in the living room. Unfortunately, the television set in  the bedroom lacks this feature. To make up for this, the author attached a small lamp to the wall to provide background lighting, This makes  watching television a good deal more enjoyable, but it ’s  not the ideal solution. Although the TV set can be  switched off with the remote  control, you still have to get out of bed to switch off the lamp.

Circuit diagram :

Automatic TV Lighting Switch Circuit Diagram

Consequently, the author devised this automatic lighting switch that switches the background light on and off along with the T V set. The entire circuit is fitted in series with the mains cable of the TV set, so there’s no need to tinker with the set. It works as follows: R1 senses  the current drawn by the TV  set. It has a maximum value  of 50 mA in standby mode,  rising  to around   500 m A  when  the  set  is  operating. The voltage across R1 is limited by D5 during negative  half- cycles  and  by  D1– D4  during positive half-cycles.  T he  voltage  across  these  four diodes charges capacitor C1 via D6 during positive  half-cycles. This voltage drives the internal LED of solid-state switch TRI1 via R2, which causes the internal triac to conduct and pass the mains voltage to the lamp.   Diode D7 is not absolutely necessary, but  it is recommended because the LED in the  solid-state switch is not especially robust  and cannot handle reverse polarisation. Fuse  F1 protects the solid-state switch against  overloads. T he  value  of  use d  here  (10 Ω)  for  resistor R1 works nicely with an 82-cm (32 inch)  LCD screen.

With smaller sets having lower  power consumption, the value of R1 can be  increased to 22 or 33 Ω, in which case you  should use a 3-watt type. Avoid using an  excessively high resistance, as otherwise TRI1 will switch on when the TV set is in standby mode.  Some TV sets have a half-wave rectifier in the  power supply, which places an unbalanced  load on the AC power outlet. If the set only  draws current on negative half-cycles, the cir-cuit won’t work properly. In countries with  reversible AC power plugs you can correct  the problem by simply reversing the plug. Compared with normal triacs, optically cou-pled solid-state relays have poor resistance  to high switch-on currents (inrush currents).

For this reason, you should be careful with  older-model TV sets with picture tubes (due  to demagnetisation circuits). If the relay fails,  it usually fails shorted, with the result that the TV background light remains on all the time. If you build this circuit on a piece of perf-board, you must remove all the copper next  to conductors and components carrying  mains voltage. Use PCB terminal blocks with a spacing of 7.5 mm. This way the separation between the connections on the solder  side will also be 3 mm. If you fit the entire  arrangement as a Class II device, all parts of  the circuit at mains potential must have a  separation of at least 6 mm from any metal  enclosure or electrically conductive exterior  parts that can be touched.
Read More

Friday, November 7, 2014

Automatic Night Lamp with Morning Alarm

This circuit automatically turns on a night lamp when bedroom light is switched off. The lamp remains ‘on’ until the light sensor senses daylight in the morning. A super-bright white LED is used as the night lamp. It gives bright and cool light in the room. When the sensor detects the daylight in the morning, a melodious morning alarm sounds. The circuit is powered from a standard 0-9V transformer. Diodes D1 through D4 rectify the AC voltage and the resulting DC voltage is smoothed by C1. Regulator IC 7806 gives regulated 6V DC to the circuit. A battery backup is provided to power the circuit when mains fails. When mains supply is available, the 9V rechargeable battery charges via diode D5 and resistor R1 with a reasonably constant current. In the event of mains failure, the battery automatically takes up the load without any delay. Diode D5 prevents the battery from discharging backwards following the mains failure and diode D6 provides current path from the battery. 

Circuit diagram :
Automatic Night Lamp with Morning Alarm Circuit Diagram


The circuit utilises light-dependant resistors (LDRs) for sensing darkness and light in the room. The resistance of LDR is very high in darkness, which reduces to minimum when LDR is fully illuminated. LDR1 detects darkness, while LDR2 detects light in the morning. The circuit is designed around the popular timer IC NE555 (IC2), which is configured as a monostable. IC2 is activated by a low pulse applied to its trigger pin 2. Once triggered, output pin 3 of IC2 goes high and remains in that position until IC2 is triggered again at its pin 2. When LDR1 is illuminated with ambient light in the room, its resistance remains low, which keeps trigger pin 2 of IC2 at a positive potential. As a result, output pin 3 of IC2 goes low and the white LED remains off. As the illumination of LDR1’s sensitive window reduces, the resistance of the device increases.

In total darkness, the specified LDR has a resistance in excess of 280 kilo-ohms. When the resistance of LDR1 increases, a short pulse is applied to trigger pin 2 of IC2 via resistor R2 (150 kilo-ohms). This activates the monostable and its output goes high, causing the white LED to glow. Low-value capacitor C2 maintains the monostable for continuous operation, eliminating the timer effect. By increasing the value of C2, the ‘on’ time of the white LED can be adjusted to a predetermined time. LDR2 and associated components generate the morning alarm at dawn. LDR2 detects the ambient light in the room at sunrise and its resistance gradually falls and transistor T1 starts conducting. When T1 conducts, melody-generator IC UM66 (IC3) gets supply voltage from the emitter of T1 and it starts producing the melody. The musical tone generated by IC3 is standard 0-9V transformer. Diodes D1 through D4 rectify the AC voltage and the resulting DC voltage is smoothed by C1. Regulator IC 7806 gives regulated 6V DC to the circuit. 

A battery backup is provided to power the circuit when mains fails. When mains supply is available, the 9V rechargeable battery charges via diode D5 and resistor R1 with a reasonably constant current. In the event of mains failure, the battery automatically takes up the load without any delay. Diode D5 prevents the battery from discharging backwards following the mains failure and diode D6 provides current path from the battery.
The circuit utilises light-dependant resistors (LDRs) for sensing darkness and light in the room. The resistance of LDR is very high in darkness, which reduces to minimum when LDR is fully illuminated. LDR1 detects darkness, while LDR2 detects light in the morning. The circuit is designed around the popular timer IC NE555 (IC2), which is configured as a monostable. IC2 is activated by a low pulse applied to its trigger pin 2. Once triggered, output pin 3 of IC2 goeshigh and remains in that position until IC2 is triggered again at its pin 2. When LDR1 is illuminated with ambient light in the room, its resistance remains low, which keeps trigger pin 2 of IC2 at a positive potential. As a result, output pin 3 of IC2 goes low and the white LED remains off. As the illumination of LDR1’s sensitive window reduces, the resistance of the device increases.

In total darkness, the specified LDR has a resistance in excess of 280 kilo-ohms. When the resistance of LDR1 increases, a short pulse is applied to trigger pin 2 of IC2 via resistor R2 (150 kilo-ohms). This activates the monostable and its output goes high, causing the white LED to glow. Low-value capacitor C2 maintains the monostable for continuous operation, eliminating the timer effect. By increasing the value of C2, the ‘on’ time of the white LED can be adjusted to a predetermined time. LDR2 and associated components generate the morning alarm at dawn. LDR2 detects the ambient light in the room at sunrise and its resistance gradually falls and transistor T1 starts conducting. When T1 conducts, melody-generator IC UM66 (IC3) gets supply voltage from the emitter of T1 and it starts producing the melody. The musical tone generated by IC3 is amplified by single-transistor amplifier T2. Resistor R7 limits the current to IC3 is amplified by single-transistor amplifier T2. Resistor R7 limits the current to IC3 and zener diode ZD limits the voltage to a safer level of 3.3 volts.

The circuit can be easily assembled on a general-purpose PCB. Enclose it in a good-quality plastic case with provisions for LDR and LED. Use a reflective holder for white LED to get a spotlight effect for reading. Place LDRs away from the white LED, preferably on the backside of the case, to avoid unnecessary illumination. The speaker should be small so as to make the gadget compact. 
Read More

Thursday, November 6, 2014

Automatic Bicycle Light

T his  automatic  bicycle  light  makes cycling in the dark much  easier (although you still need  to pedal of course). The circuit  takes  the  ambient  light  level  into account and only turns on  the light when it becomes dark.  The light is turned off when no  cycling has taken place for over  a minute or if it becomes light  again. The biggest advantage of  this circuit is that it has no manual controls. This way you can  never ‘forget’ to turn the light  on or off. This makes it ideal for  children and those of a forgetful  disposition.

Bicycle Light Image :
To detect when the bicycle is  used (in other words, when the  wheels turn), the circuit uses a  reed switch (S1), mounted on  the frame close to the wheel.  A small magnet is fixed to the  spokes (similar to that used with  most  bicycle  speedometers),  which  closes  the  reed  switch  once for every revolution of the  wheel. Whilst the wheel turns,  pulses are fed to the base of T1  via C1. This charges a small electrolytic capacitor (C2). When it is  dark enough and the LDR there-fore has a high resistance, T2  starts conducting and the lamp  is turned on. With every revolution of the wheel C2 is charged  up again. The charge in C2 ensures that T2  keeps conducting for about a minute after  the wheel stops turning. Almost any type of  light can be connected to the output of the  circuit.

Circuit diagram :
Automatic Bicycle Light Circuit Diagram
Part List :
Resistors
R1 = 1MΩ (SMD 0805)
R2,R4 = 100kΩ (SMD 0805)
R3,R6 = 1kΩ (SMD 0805)
R5 = LDR e.g. FW150 Conrad Electronics # 183547
Capacitors
C1 = 1µF 16V (SMD 0805)
C2 = 10µF 16V (SMD chip type)
C3 = 100nF (SMD 0805)
Semiconductors
T1 = BC807 (SMD SOT23)
T2 = STS6NF20V (SMD SO8)
Miscellaneous
S1 = reed switch (not on board) +
2-way right angle pinheader
BT1 = 3–12V (see text)
With a supply voltage of 3V the quiescent  current when the reed switch is open is just  0.14 μA. When the magnet happens to be in  a position such that S1 is closed,  the current is 3 μA. In either case  there is no problem using batteries to supply the circuit. The  supply voltage can be anywhere  from 3 to 12 V, depending on the  type of lamp that is connected. Since it is likely that the circuit  will be mounted inside a bicycle light it is important to keep  an eye on its dimensions. The  board has therefore been kept  very compact and use has been made of SMD components. Most  of them come in an 0805 pack-age.  C2 comes in a so called  chip version. The board is single sided with the top also acting as the solder side.
PCB
The print outline for the LDR (R5)  isn’t exactly the same as that of  the  outline  of  the  LDR  mentioned  in  the  component  list.  The outline is more a general one  because there is quite a variety  of different LDR packages on the  market. It is therefore possible  to use another type of LDR, if for  example the light threshold isn’t  quite right. The LDR may also be  mounted on the other side of the  board, but that depends on how  the board is mounted inside the  light. For the MOSFET there are also many alternatives available, such as the FDS6064N3 made  by   Fairchild ,  the  SI4864 DY  made by  Vishay Siliconix , the IR F74 0 4 made by IR F or the NTMS 4N01R 2G  made by ONSEMI. The reed switch also  comes in many different shapes and sizes; some of them are even waterproof and come with the wires already attached.

For the supply connection and  the connection to the lamp you  can either use PCB pins or solder the wires directly onto the  board. The soldered ends of the  pins can be shortened slightly so that they  don’t stick out from the bottom of the board.  This reduces the chance of shorts with any metal parts of the light. Do take care when you use a dynamo  to  power the circuit the alternating voltage must first be rectified! The same applies to  hub dynamos, which often also output an  alternating voltage.
Read More

Tuesday, November 4, 2014

Automatic Battery Charger

Normally, chargers available in the market do not have any sort of control except for a ro-tary switch that can select different tap-pings on a rheostat, to vary the charging current. This type of control is not adequate because of the irregular fluctuations in the mains supply, rendering the control ineffective.  A simple circuit intended for automatic charging of lead-acid batteries is presented here. It is flexible enough to be used for large capacity inverter batteries. Only the rating of transformer and power transistor needs to be increased.

Automatic Battery Charger Circuit Diagram:
 charger circuit diagram

The circuit has been basically designed for a car battery (about 40 Ah rating), which could be used for lighting two 40W tube lights. The circuit includes Schmitt trigger relay driver,float charger,and battery voltage monitor sections.  The Schmitt trigger is incorporated to avoid relay chattering. It is designed for a window of about 1V. During charging, when the battery voltage increases be-yond 13.64V, the relay cuts off and the float charging section continues to work. When battery voltage goes below 11.66V, the relay is turned on and direct (fast) charging of the battery takes place at around 3A.  In the Schmitt trigger circuit, resistors R1 and R2 are used as a simple voltage divider (divide-by-2) to provide battery voltage sample to the inverting input terminal of IC1. The non-invert-ing input terminal of IC1 is used for reference input derived from the output of IC2 (7806), using the potentiometer arrangement of resistors R3 (18 kilo-ohm) and R4 (1 kilo-ohm).

LED1 is connected across relay to indicate fast charging mode. Diodes D3 and D6 in the common leads of IC2 and IC3 respectively provide added protecion to the regulators.  The float charging section, comprising regulator 7812, transistors T3 and T4, and few other discrete components, becomes active when the battery volt-age goes above 13.64V (such that the relay RL1 is deenergised). In the energised state of the relay, the emitter and collector of transistor T4 remain shorted, and hence the float charger is ineffective and direct charging of battery takes place.

The reference terminal of regulator (IC3) is kept at 3.9V using LED2, LED3, and diode D6 in the common lead of IC3 to obtain the required regulated output (15.9V), in excess of its rated output, which is needed for proper operation of the circuit. This output voltage is fed to the base of transistor T3 (BC548), which along with transistor T4 (2N3055) forms a Darlington pair. You get 14.5V output at the emitter of transistor T4, but because of a drop in diode D7 you effectively get 13.8V at the positive terminal of the battery. When Schmitt trigger switches ‘on’ relay RL1, charging is at high current rate (boost mode). The fast charging path, starting from transformer X2, comprises diode D5, N/O contacts of relay RL1, and diode D7.

The circuit built around IC4 and IC5 is the voltage monitoring section that provides visual display of battery voltage level in bar graph like fashion. Regulator 7805 is used for generating reference voltage. Preset VR1 (20 kilo-ohm) can be used to adjust voltage levels as indicated in the circuit. Here also a pot meter arrangement using resistors R7, R8, and R9 is used as ‘divide by 3’ circuit to sample the battery voltage. When voltage is below 10V, the buzzer sounds to indicate that the safe dis-charge limit has been exceeded.
 
 
Read More

Sunday, November 2, 2014

VW CAR PASSAT ENGINE CONTROL AND AUTOMATIC SOLENOID ELECTRICAL WIRING CIRCUIT


VW CAR PASSAT ENGINE CONTROL AND AUTOMATIC SOLENOID ELECTRICAL WIRING CIRCUIT

1993 VW Passat Engine Control Module, Automatic Control Unit, and Automatic Solenoid Electrical Wiring Diagram are shown in the following figure. It shows the connection and wiring between each parts and component of Engine Control Module, Automatic Control Unit, and Automatic Solenoid system of the vehicle such as the multi-function switch, fuse/relay panel, knock sensor, coolant temperature sensor, shift lock solenoid, starter interlock/back up lit relay,automatic control computer clutch shut off relay, automatic control unit, automatic solenoids, program switch, throttle position sensor, full throttle switch, idle switch, throttle valve potentiometer, ignition booster, distributor firing order, engine control module, carbon canister, cold starter, idle air control valve, evap emission on/off valve, and many more.
Read More

Friday, October 31, 2014

Automatic Mains Disconnect

Downloading and CD-burning programs usually provide the option of automatically shutting down the PC on completion of their tasks. However, this energy-saving feature is of little benefit if even after the PC has been switched off, all of the peripheral equipment remains connected to the mains and happily consumes watt-hours. The circuit shown here provides a solution to this dilemma. It is connected ahead of the power strip and connects or disconnects mains power for all of the equipment via a power relay. A connection to a 12-V PC fan (which may be the processor fan or the fan for the chipset, if the latter is present) indicates whether the PC is switched on.

If you are certain that the 12-V power supply voltage is switched off when the PC is in the sleep mode, you can use this connection instead. To switch everything on, press the Start button to cause the power relay to be energized and provide mains voltage to all of the equipment. If the PC has an ATX board, its Power switch must be pressed at the same time to cause the PC to start up. When the PC fan starts to run, low-power relay Re1 engages and takes over the function of the Start switch, which can then be released. This state is stable. If the PC switches to the sleep state, the 12-V voltage drops out.

AutomaticThe electrolytic capacitor ensures that Re1 remains engaged for a short time, after which it drops out, followed by the power relay. D1 prevents the electrolytic capacitor from discharging through the connected fan, and D2 is the usual freewheeling diode. The system is disconnected from both mains leads and is thus completely de-energized. Be sure to select components that are suitable for their tasks. Naturally, the contacts of Re2 should be rated to handle the total current drawn by all of the peripheral equipment and the PC, and the relay coil must be suitable for use with mains voltage (6 mm minimum separation between coil and contacts).

A low-power 12-V relay that can switch mains voltage is adequate for Re2. The Start pushbutton switch is connected to the mains voltage, so a 230-V type must be used. The circuit board layout and enclosure must also be designed in accordance with safety regulations. A separation of at least 6 mm must be maintained between all components carrying mains voltage and the low-voltage components, and the enclosure must be completely free of risk of electrical shock. With a bit of skill, the circuit can be fitted into a power bar with a built-in switch, if the switch is replaced by a pushbutton switch having the same mounting dimensions.
Read More

Monday, October 27, 2014

Automatic Water Pump Controller Circuit

Automatic water pump controller is a series of functions to control the Automatic Water Pump Controller Circuit in a reservoir or water storage. As the water level sensor made with a metal plate mounted on the reservoir or water tank, with a sensor in the short to create the top level and a detection sensor for detecting long again made the lower level and ground lines connected to the bottom of reservoirs or reservoir. The series of automatic water pump controller is designed with 2 inputs NOR by 4 pieces and relay that is activated by the transistor. Automatic water pump circuit requires +12 VDC voltage source and can be used to control the water pump is connected to AC power . Here is the complete series of pictures.

Series Automatic Water Pump Controller 



List Component Automatic Water Pump Controller 
R1 = 15K 
R2 = 15K 
R3 = 10K 
R4 = 1K 
D1 = LED 
D2 = 1N4148 
Q1 = BC337 
IC1 = 4001 
SW = SPDT Switches 
Relay RL1 = 12V 

The working principle series of automatic water pump controller above is. At the time the water level is below both sensors, the output IC1C (pin 10) will be LOW, and when the water began to touch the lower level sensor, the output IC1C (pin10) remains LOW until the water touches the sensor level above, then the output IC1C (pin 10) going HIGH and active relay through Q1 and turn on the water pump to meguras reservoir. At the muli down and water level sensors for water untouched MKA IC1C output (pin 10) remains HIGH until the new water untouched all sensor IC1C output (pin 10) LOW and water pump died.

The series of automatic water pump controller is equipped with SW1 which serves to reverse the logic of drains (the output of IC1C) and the concept of water supplied (output dri IC1D). When SW1 is connected to IC1D the water pump will turn on when the water does not touch all the sensors and will die when all the sensors tesentuh water. Automatic water pump controller can be used to fill or drain the water according to which mode is selected via SW1.
Read More

Friday, September 26, 2014

Automatic Day Night Twilight Switch Circuit

 Here is a circuit which will automaticaily light your porch light or activate any other device when the ambient light drops below a certain level.
A ·light dependent resistor is used in series with a relay. The resistor has a value in excess of ‘l megohm when illuminated, this drops A7  to below 110 ohms when day light. It is important that the LDR be positioned in such a place as not to receive any spurious illumination as this will cause the relay to drop out intermittently. A bimetallic strip type relay will give sufficient delay to ensure that incident light flashes have no influence.

Automatic Day/Night, Twilight Switch Circuit


Read More

Monday, September 15, 2014

Automatic Room lock and Lights circuit Wiring diagram

This schema counts and indicates up to nine persons present in the room and automatically locks the door and switches off lights as soon as they leave. It automatically switches on the lights when the first person enters the room. The schema can be used as a power-saving device and a security device to prevent unauthorised entry in the room, especially in a business meeting room.

Circuit and working

The schema, shown in Fig. 1, is built around three NE555 timer ICs (IC1, IC2 and IC6), an up/down BCD decade counter 74LS192 (IC3), a 7-segment display driver 74LS47 (IC4), 4-input NOR gate HEF4002B (IC5) and a common-anode 7-segment display LTS542 (DIS1). S1 and S2 are foot switches. S1 is installed under door-mat of the door used to enter the room, and S2 is installed under a door-mat just inside the room.


The outputs of IC3 change state synchronously with the low-to-high transitions on the clock inputs. Separate count up (CPU) and count down (CPD) pins of IC3 are used here. Its parallel pin 11 is made high and parallel data input pins 15, 1, 10 and 9, along with master reset pin 14, are made low in this schema.

The outputs (Q0 through Q3) of IC3 are given to IC4 to drive display DIS1. Resistor R11 is used to limit the current flowing through DIS1.

Outputs of IC3 are also given to IC5. output O1 of IC5 is fed to relay-driver transistor T3 through resistor R9 to energise relay RL1. Light switches off when RL1 is energised. The second output O2 is fed to relay-driver transistor T4 to energise relay RL2 for locking the door. RL1 and RL2 energise simultaneously as inputs of 4-input NOR gate (IC5) are connected to both the drivers.

Automatic

Fig. 1: schema diagram of the automatic lock and lights schema


Fig. 2: An actual-size, single-side PCB for the automatic room-lock and lights schema


Fig. 3: Component layout for the PCB



Output O2 of IC5 is also given to the base of transistor T7 whose collector is connected to the base of transistor T6. When O2 of IC5 goes high, it locks the door and makes the Vcc pin 8 of IC1 low to stop further counting.


To open the lock, press switches S3 and S4 (acting as security keys) simultaneously. The mononstable schema built around NE555 (IC6) triggers and its output goes high for around 11 seconds and makes the base of transistor T4 low, via transistor T5. This action de-enegises relay RL2 to open the lock for a pre-defined time period based on the values of R12 and C5. At least one person should enter the room within this time period, otherwise it will get locked again. During this period, Vcc pin 8 remains high to enable IC1.

When each person enters the room and presses foot switch S1, counter IC3 advances by one count and display shows the number of persons in the room. On first person’s entry, the outputs O1 and O2 of IC5 go low, transistors T3 and T4 stop conducting and relays RL1 and RL2 de-energise to switch on the light and open the door lock.

Similarly, when they start leaving the room by enabling foot switch S2, counter IC3 reduces by one count and the display shows the number of persons present in the room. the outputs O1 and O2 of IC5 remain low, so light remains on and door remains open till the room is vacant.

Construction and testing
An actual-size, single-side PCB for the schema is shown in Fig. 2 and its component layout in Fig. 3. After assembling the schema on PCB, enclose it in a suitable case. Switches S1 and S2 should be installed as explained earlier. The display can be installed on the door frame outside the room. Fix switches S3 and S4 at a suitable location such that you can press them simultaneously when needed.

Connect the door-lock assembly to relay RL2 contacts using external wires as shown in Fig. 1. Use a 2-pin connector each for connecting the light and lock assembly.

EFY note. Avoid entry of more than nine persons. Otherwise, at the entry of 10th person, the display will show ‘0,’ the door will get locked and the lights will switch off. If this happens, someone will have to press switch S2 from inside the room to open the lock and switch on the lights.


Sourced by: EFY : Author Name:  Suresh Dwivedi
Read More

Saturday, September 13, 2014

Automatic Battery Charger Circuit

Basically the circuit designed above have a very simple way of working, where the circuit is designed so that does not happen short circuit or short circuit between the voltage supply with batteries that will be in-charge.


Automatic

 It is true that if any one wants to try to direct mengghubungkan between supply with batteries then the batteries can be sure will be filled. But the current flowing through a charged battery can not be controlled and if the battery is full, the batteries will be damaged or worn out if it remains on the short circuit condition.

Working Principle Battery Charger

By the time we put an empty battery charging terminals, transistor Q1 will be activated immediately because the current flows through R1 and would trigger a transistor Q1 base. In this condition the flow that would fill the batteries mostly comes from the collector of Q1 is connected directly to the positive terminal of supply. Then during the charging process increases the battery voltage will increase the current flowing in Q2 base via 10 Kohm R5, VR1 and diode D2. VR1 is a component that is used as an initial calibration to determine the exact position in the planning process of switching circuit. For VR1 you can use a trimpot or potensio according to your taste. At the beginning of filling, arrange potensio at position D3 LED indicators on the condition of death, and the current flowing into the collector of Q1 is not too big and not too small.

If the battery is fully charged, the LED indicator will light up automatically because of an increase in voltage on the battery charge will cause the increase of current flowing at the base of transistor Q2 and will terminate the charging cycle due to transistor Q1 having a cut-off due to lack of base current. Why on condition Q1 base current will experience a shortage of this is because almost all the current flowing in R1 10 Kohm will switch to a diode D1 which is logically connected directly with ground experience due Q2 saturated.
.
Component List
1. Resistors: R1 (10 Kohm), R2 (680 ohms), R3 (100 Kohm), R5 (10 Kohm) and VR1 (Potensio / trimpot = 100 Kohm)
2. Diodes: D1 & D2 (IN4002) and D3 (Led)
3. Transistors: Q1 and Q2 (2N3904)
4. 9 volt power supply
Read More

Wednesday, August 20, 2014

Automatic Soldering Iron Switch Wiring diagram Schematic

Quite often, we forget to turn off the soldering iron. This results in not only a smoking oxidised iron but also waste of electricity. To solve this problem, here’s a schema that automatically switches off the soldering iron after a predetermined time. The schema draws no power when it is inactive. The schema can also be used for controlling the electric iron, kitchen timer or other appliances.

Automatic Soldering Iron Switch Circuit Diagram

Automatic


At the heart of the schema is a monostable multivibrator built around timer IC 555. When the schema is in sleep mode, to switch on the soldering iron, you should push switch S1 momentarily. The multivibrator gets triggered and its output pin 3 goes high for around 18 minutes to keep relay RL1 energised via transistor T1. At the same time, capacitor C3 charges and AC supply is provided to switch on the soldering iron via normally opened (N/O) contacts of relay RL1.

The soldering iron remains ‘on’ for the time period predetermined by resistor R1 and capacitor C2. Here, this time is set for 18 minutes. Flashing of LED1 indicates the heating progress of the soldering iron. When the predetermined time is over, relay RL1 de-energises to turn off the soldering iron and the buzzer sounds until capacitor C3 gets discharged.

For switching on the schema, use either a bell push switch or a similar switch with appropriate current carrying capacity.


Sourced By: EFY Author  T.A. Babu
Read More